Comparison of ARTMAP Neural Networks for Classification for Face Recognition from Video
نویسندگان
چکیده
In video-based of face recognition applications, the What-and-Where Fusion Neural Network (WWFNN) has been shown to reduce the generalization error by accumulating a classifier’s predictions over time, according to each individual in the environment. In this paper, three ARTMAP variants – fuzzy ARTMAP, ART-EMAP (Stage 1) and ARTMAP-IC – are compared for the classification of faces detected in the WWFNN. ART-EMAP (stage 1) and ARTMAP-IC expand on the well-known fuzzy ARTMAP by using distributed activation of category neurons, and by biasing distributed predictions according to the number of time these neurons are activated by training set patterns. The average performance of the WWFNNs with each ARTMAP network is compared to the WWFNN with a reference k-NN classifier in terms of generalization error, convergence time and compression, using a data set of real-world video sequences. Simulations results indicate that when ARTMAP-IC is used inside the WWFNN, it can achieve a generalization error that is significantly higher (about 20% on average) than if fuzzy ARTMAP or ARTEMAP is used. Indeed, ARTMAP-IC is less discriminant than the two other ARTMAP networks in cases with complex decision bounderies, when the training data is limited and unbalanced, as found in complex video data. However, ARTMAP-IC can outperform the others when classes are designed with a larger number of training patterns.
منابع مشابه
Comparison of ARTMAP Neural Networks for Classification for Face Recognition
In applications of face recognition from video, the What-and-Where fusion neural network has been shown to reduce the generalization error by effectively accumulating a classifier’s predictions over time, according to each individual in the environment. In this paper, fuzzy ARTMAP and ARTMAP-IC are compared for the classification of faces detected in video frames within the What-and-Where fusio...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007